Reg. No. : \square

Question Paper Code : X 20479

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020 AND APRIL/MAY 2021
Third Semester
Electrical and Electronics Engineering
EE 6302 - ELECTROMAGNETIC THEORY
(Regulations 2013)
Common to : PTEE 6302 - Electromagnetic Theory for Electrical and Electronics Engineering
B.E. (Part-Time) Second Semester - (Regulations 2014)

Time : Three Hours
Maximum : 100 Marks
Answer ALL questions
PART - A
(10×2=20 Marks)

1. What are the sources of electromagnetic fields?
2. State Stoke's theorem.
3. Find the capacitance of an isolated spherical shell of radius a.
4. Find the magnitude of D for a dielectric material in which $\mathrm{E}=0.15 \mathrm{MV} / \mathrm{m}$ and $\varepsilon_{\mathrm{r}}=5.25$.
5. What is the mutual inductance of the two inductively coupled coils with self inductance of 25 mH and 100 mH ?
6. What is the practical significance of Lorentz's Force?
7. Define mutual inductance and self inductance.
8. Distinguish between transformer emf and motional emf.
9. What is Skin depth ?
10. Write poynting vector.
11. a) i) Verify the divergence theorem for a vector field
$D=3 x^{2} a_{x}+(3 y+z) a_{y}+(3 z-x) a_{z}$ in the region bounded by the cylinder $\mathrm{x}^{2}+\mathrm{y}^{2}=9$ and the planes $\mathrm{x}=0, \mathrm{y}=0, \mathrm{z}=0$ and $\mathrm{z}=2$.
ii) A novel printing technique is based upon electrostatic deflection principle. Justify.
(OR)
b) i) State and prove Coulomb's Law.
ii) Obtain an expression for electric field intensity due to a uniformly charged line of length ' T '.
12. a) i) Derive the electric potential due an uniformly charged infinite line with uniform charge distribution.
ii) Obtain the electric potential due to electric dipole.
(OR)
b) i) Derive the electrostatic boundary conditions.
ii) Derive the expression for capacitance of a parallel plate capacitor.
13. a) i) Develop an expression for the magnetic field intensity at any point on the line through the centre at a distance ' h ' m from the centre and perpendicular to the plane of a circular loop (in XY plane) of radius ' a ' m and carrying a current I Ampere in the anti-clockwise direction.
ii) Find the magnetic field intensity at Point $\mathrm{P}(1.5,2,3)$ caused by a current filament of 24 Ampere in the a_{z} direction on the z axis and extending from $\mathrm{z}=0$ to $\mathrm{z}=6$.

(OR)

b) i) Deduce the point form of Ampere's circuital law.
ii) Determine the torque on a rectangular loop ($\mathrm{a} \times \mathrm{m} \times \mathrm{m}$) carrying current I and placed in a uniform magnetic field.
14. a) Derive the set of Maxwell's equations with solutions in integral form from fundamental laws for a good conductor.

> (OR)
b) i) Explain the relation between field theory and circuit theory and thus obtain an expression for ohm's law.
ii) Compare and explain in detail conduction and displacement currents.
15. a) Derive the expression for electromagnetic wave equation for conducting and perfect dielectric medium.
(OR)
b) A 6580 MHz uniform plane wave is propagating in a material medium of $\varepsilon_{\mathrm{r}}=2.25$. If the amplitude of the electric field intensity of lossless medium is $500 \mathrm{~V} / \mathrm{m}$. Calculate the phase constant, propagation constant, velocity, wavelength and intrinsic impedance.
PART - C
16. a) A plane wave travelling in +z direction in free space ($\mathrm{z}<0$) is normally incident at $\mathrm{z}=0$ on a conductor $(\mathrm{z}>0)$ for which $\sigma=61.7 \mathrm{MS} / \mathrm{m}, \mu_{\mathrm{r}}=1$. The free space E wave has a frequency $\mathrm{f}=1.5 \mathrm{MHz}$ and an amplitude of $1.0 \mathrm{~V} / \mathrm{m}$ at the interface it is given by $\mathrm{E}(0, \mathrm{t})=1.0 \sin 2 \pi f \mathrm{fta}_{\mathrm{y}}(\mathrm{V} / \mathrm{m})$. Analyse the wave and predict magnetic wave $\mathrm{H}(\mathrm{z}, \mathrm{t})$ at $\mathrm{z}>0$.
(OR)
b) Given that $A=30 e^{-r} \stackrel{\rho}{a}_{r}-2 z \stackrel{p}{a}_{z}$ in cylindrical coordinates, evaluate both sides of divergence theorem for the volume enclosed by $r=2, z=0$ and $z=5$.

